
Robotics and Autonomous Systems 56 (2008) 247–264
www.elsevier.com/locate/robot
Natural landmark extraction for mobile robot navigation based on an
adaptive curvature estimationI
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Abstract

This paper proposes a geometrical feature detection system which is to be used with conventional 2D laser range finders. It consists of three
main modules: data acquisition and pre-processing, segmentation and landmark extraction and characterisation. The novelty of this system is a
new approach for laser data segmentation based on an adaptive curvature estimation. Contrary to other works, this approach divides the laser scan
into line and curve segments. Then, these items are used to directly extract several types of landmarks associated with real and virtual features
of the environment (corners, center of tree-like objects, line segments and edges). For each landmark, characterisation provides not only the
parameter vector, but also complete statistical information, suitable to be used in a localization and mapping algorithm. Experimental results show
that the proposed approach is efficient to detect landmarks for structured and semi-structured environments.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Reliable navigation is a fundamental competence for
autonomous mobile robotics. The basic idea behind most of the
current navigation systems operating in a known environment
is that the robot carries sensors to perceive the environment
and match the obtained data with the expected data available
in a previously generated map. The robot uses this operation
to update its pose—position and orientation—and correct
the localization error due to odometry slippage. In addition,
sensor information can be used to simultaneously localize
the robot and build the map of the environment along the
robot’s trajectory. The difficulty of simultaneous localization
and map building (SLAM) problem lies in the fact that an
accurate estimation of the robot trajectory is required to obtain
a good map, and for reducing the unbounded growing odometry
errors requires to associate sensor measurements with a precise
map [30]. The SLAM problem has received considerable
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attention over the last decade and different solutions have been
proposed. In order to increase the efficiency and robustness
of the process, sensor data have to be transformed in a more
compact form before attempting to compare them to the
ones presented on a map or store them in a simultaneously
built map. In either case, the chosen map representation
heavily determines the precision and reliability of the whole
task [28]. Typical choices for the map representation include
topological [18], cell-based [14], feature- or landmark-based
models [30] and sequential Monte Carlo methods [31]. In
this paper, we adopt a feature-based approach for the map
representation, where landmarks can be defined as “distinct
features that a vehicle can recognize reliably from its sensor
observations” [20]. These approaches allow the use of multiple
models to describe the measurement process for different parts
of the environment and avoid the data smearing effect [30].
However, the success of this representation is conditioned on

• the chosen type of landmark and the existence of accurate
sensor capable of discriminating between similar landmarks;
and

• the availability of fast and reliable algorithms capable of
extracting landmarks from a large set of noisy and uncertain
data.
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Thus, in most of these algorithms, it is decisive to choose
a correct type of landmark. This decision can be made
according to the environment where the robot is moving and
the external sensor used to obtain the data. Regarding this
question, visual landmarks can be used in indoor environments
and outdoors, e. g. Harris corners [12] or SIFT (Scale Invariant
Feature Transform) features [17]. However, if a range sensor
is employed, features such as walls or corners are used as
landmarks in structured environments [1,28]. In unstructured
or natural outdoor environments, similar simple landmarks can
be very infrequently detected. Therefore, some authors have
proposed to use tree trunks or tree-like objects as naturally
occurring landmarks [16,36]. In our case, as several authors
have pointed out [36,20], it is assumed that structured and semi-
structured environments have common features (tree trunks,
columns, corners or walls) which can be described by items
as line segments, corners or curve segments in a planar
representation. With respect to the selected sensor to perceive
these landmarks, sonar, laser or vision-based systems sensors
are commonly used. Applying vision to feature extraction
leads to increase CPU usage due to the complexity of the
algorithms required. On the contrary, the complexity of feature
extraction algorithms that work with sonar or laser sensors is
usually very reduced. If we assume that the structural features
commonly found in the environment are invariant to height
(e.g. walls, corners, columns), a planar representation would
be adequate for feature extraction. Sonar sensors suffer from
frequent specular reflections and a significant spread of energy
(beamwidth). Instead, a laser range scanner is capable of
collecting such high quality range data and it suffers from very
small number of specular reflections. The angular uncertainty
of the laser sensor is very small and, therefore, it can provide
a very fine description of the robot’s surroundings. Finally,
although from the perspective of cost, laser scanners are more
expensive than sonar sensors, it can be appreciated that it is an
affordable device for most mobile robotics systems.

On the other hand, pattern recognition concepts and
algorithms can be applied to extract features from sensor data.
Thus, simple methods have been broadly used to support
mobile robot operation using line or point features extracted
from range images [35,10]. Although these methods are very
fast, they have problems in dealing with adverse phenomena
such as false measurements on surface limits [9]. Besides, they
do not consider sensor motion. More robust methods that take
into account sensor motion have been also proposed [4,25].
These methods are based on more elaborate concepts, like the
Hough transform [4], the fuzzy clustering [9] or the Kalman
filter [28]. The main drawbacks of the majority of these
methods are they only look for one type of feature (e.g., line
segment). On the contrary, a concept that can be used to
obtain several types of features from the laser scan is the local
curvature value [20,24]. Besides, features extracted from local
curvature are view-point invariant measures and, this means
that they can be used as robust landmarks in localization.
In [20], an iterative curvature scale space (CSS) approach is
used to detect corners from the laser scan data. In [24], corners,
line segments and curve segments are simultaneously extracted
Fig. 1. Sensor information obtained from a single laser scan using a SICK laser
scanner.

from the laser scan using an adaptively estimated curvature
function.

The aim of this work is to extract and characterise several
types of landmarks that are present in structured and semi-
structured environments using a laser range finder (see Fig. 1).
The approach must be fast and capable of extracting landmarks
from noisy and uncertain data. Moreover, characterisation must
provide not only geometrical information, but also complete
statistical information to be used in later navigation applications
as SLAM. Particularly, the laser scan is analyzed to detect
rupture points and breakpoints [9] and four types of landmarks:
line segments, corners, center of curve segments and edges.
Such items are collected from the environment as follows:

• Rupture points are scan measurements associated with
discontinuities due to the absence of obstacles in the
scanning direction.

• Breakpoints are scan discontinuities due to the change of
surface being scanned by the laser sensor.

• Line segments result from the scan of planar surfaces
(e.g. walls).

• Real corners are due to the change of surface being scanned
or due to the change in the orientation of the scanned surface.
Corners are not associated with laser scan discontinuities.

• Virtual corners are defined by the intersection of two lines
corresponding to previously detected line segments. Thus,
they do not correspond to any real corner of the environment.

• Center of curve segments result from the scan of curve
surfaces (e.g. trees or cylindrical columns).

• Edges are defined as breakpoints associated with free
end-points of plane surfaces [36]. They are also called
semiplanes [11]. Edges might correspond to frames of open
doors or convex corners and their detection must be carefully
achieved to avoid false edges arising from occlusions [11].

In this paper, we present a geometrical feature detection
framework for using with conventional 2D laser sensors.
This framework is composed of three procedures [10,9]: data
acquisition and pre-processing, laser scan segmentation and
landmark extraction and characterisation, which are described
in the rest of the paper. Thus, Section 2 shows the characteristics
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of the laser sensor and the data pre-processing. Section 3
presents the laser scan data segmentation which consists of
two stages. Firstly, the adaptive breakpoint detection method
[9] is used to look for large discontinuities. Then, the
adaptive curvature function is used to segment the whole
scan data into clusters of range readings which present a
homogeneous curvature value. Section 4 describes the detection
and characterisation of the different types of landmarks.
Section 5 presents the experimental results and Section 6
compares the proposed method with other similar approaches.
Finally, Section 7 summarizes conclusions and future work.

2. Laser scan data acquisition and pre-processing

The information provided by laser sensors in a single scan
is usually quite dense and has good angular precision. Range
images provided by laser range finders are typically in the
form {(r, φ)l|l=1...NR }, on which (r, φ)l are the polar coordinates
of the lth range reading (rl is the measured distance of an
obstacle to the sensor rotating axis at direction φl ) and NR is
the number of range readings related to the angular range of the
measurement R and the laser angular resolution 1φ, through
NR =

R
1φ

. The scan measurements are acquired by the laser
range finder with a given angular resolution 1φ = φl − φl−1.
The distance rl is perturbed by a systematic error, εs , and
a statistical error, εr , usually assumed to follow a Gaussian
distribution with zero mean and variance σ 2

r . Then, if rm is the
measured distance and rt the true obstacle distance, it can be
considered that they are related by

rm − rt = εs(rm) + εr . (1)

Our laser range finder is a SICK Laser Measurement System
(LMS) 200, and the experiments have been performed with
the LMS doing planar range scans with angular range of
180◦ operating at frequencies of about 60 Hz, and maximum
measurement range of 8 m. In these conditions, the SICK
LMS200 laser sensor exhibits a systematic error of ±15 mm
and a statistical error (σr ) of 5 mm. Taken several values
of rm for rt ∈ [0.1, 8]m, the systematic error εs(rm) can
be easily approximated by a sixth-order polynomial which
fits the differences rm − rt in the least-squares sense [9].
This polynomial is used for compensating the systematic error
according to the model (1). The residual noise after systematic
error correction is compatible with the value σr = 0.005 m
provided by the laser range finder manufacturer. Besides,
although several authors omit the term σφ which keeps track
of angular uncertainties [3,13], we have assumed that this
term can reach its maximum value, i.e. σφ = 1φ/4, where
1φ is the laser angular resolution. When range images are
taken with the robot in motion, they may be deformed during
the scanning time. In such cases, a compensation algorithm
based on estimates of the robot motion should be applied.
In our system, the motion correction algorithm described
in [4] is used. Basically, the vehicle displacement during
a scan is compensated by transforming each range reading
acquired at instant time tl to the desired reference time t1. Let
{(x, y)l|l=1...NR } be the Cartesian representation of the range
Fig. 2. (a)–(b) Laser scan and extracted breakpoints (squares). It must be noted
that segments of the laser scan which present less than ten range readings are
not taken into account (they are marked as grey colored range readings).

images, where xl = rl cos φl and yl = rl sin φl , and pl =

(xs, ys, θs)l the sensor absolute position when the lth range
reading is acquired. At the lth range reading acquisition, the
local coordinate frame has been displaced pl

d = pl − p1 from
the start of range reading acquisition. In order to recover the
coordinates of the lth range reading when the sensor is on p1,
(x1

l , y1
l , θ1

l ), the sensor displacement is taken into account as(
x1

l

y1
l

)
=

(
cos θ l

d sin θ l
d

− sin θ l
d cos θ l

d

)
·

(
xl + x l

d

yl + yl
d

)
. (2)

Thus, it is not necessary to know the sensor absolute pose
at each lth point, only its relative displacement. In our
experiments, it is assumed that odometry can provide a good
estimation of this movement. In fact, the operating frequency of
the laser range finder is very high and the sensor displacement
pl

d is interpolated by a linear relation between p1
d and pNR

d .
These values can be derived from odometry in t1 and tNR .

Finally, at the same time that the systematic error and the
motion are corrected, rupture points can be detected. A rupture
point is defined as a discontinuity during the laser measurement
and can be due to absence the of obstacles in that direction.
SICK LMS200 returns a predefined binary data to indicate this
occurrence.

3. Laser scan data segmentation

Segmentation is a process whose aim is to classify each
scan data into several groups, each one of them is associated
with different surfaces of the environment. In our approach, the
segmentation is achieved in two consecutive steps. Firstly, scan
data is segmented using the adaptive breakpoint detector [9].
This algorithm permits to reject isolated range readings, but it
provides an undersegmentation of the laser scan, i.e. extracted
segments between breakpoints typically group two or more
different structures (see Fig. 2). In order to avoid this problem,
a second segmentation criterion is applied to each segment.
This one is based on the curvature associated with each range
reading: consecutive range readings belong to the same segment
while their curvature values are similar. To perform this
segmentation task, the adaptive curvature function associated
with each segment of the laser scan is obtained [24].
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Fig. 3. (a) Segment of a single laser scan (�—breakpoints, o—corners); and
(b) curvature function associated with (a).

Curvature functions basically describe how much a curve
bends at each point. Peaks of the curvature function correspond
to the corners of the represented curve and their height depends
on the angle at these corners. Flat segments whose average
value is larger than zero are related to curve segments and those
whose average value is equal to zero are related to straight-
line segments. Fig. 3(a) presents a curve yielding two corners
(points 2 and 3) and a curve segment (from point 3 to 4). Peaks
corresponding to 2 and 3 can be appreciated in its curvature
function (Fig. 3(b)). It also shows that segment 3–4 has an
average value larger than zero, but it is not flat due to noise.
Nevertheless, peaks in that segment are too low to be considered
corners of the curve. Finally, segments 1–2 and 2–3 present
a curvature average value near to zero, as is expected in line
segments.

In a general case, the curvature κ(t) of a parametric plane
curve, c(t) = (x(t), y(t)), can be calculated as [21,15]

κ(t) =
ẋ(t)ÿ(t) − ẍ(t)ẏ(t)

(ẋ(t)2 + ẏ(t)2)3/2 . (3)

This equation implies that estimating the curvature involves the
first- and second-order directional derivatives of the plane curve
coordinates, (ẋ, ẏ) and (ẍ, ÿ), respectively. This is a problem
in the case of computational analysis where the plane curve is
represented in a digital form [15]. In order to solve this problem,
two different approaches have been proposed:

• Interpolation-based curvature estimators. These methods
interpolate the plane curve coordinates and then, they
differentiate the interpolation curves. Thus, Mokhtarian and
Mackworth [21] propose to filter the curve with a 1D
Gaussian filter. This filtering removes the plane curve noise.

• Angle-based curvature estimators. These methods propose
an alternative curvature measure based on angles between
vectors which are defined as a function of the discrete curve
items. Thus, the curve filtering and curvature estimation are
mixed by Agam and Dinstein [2], which define the curvature
at a given point as the difference between the slopes of the
curve segments on the right and left side of the point, where
slopes are taken from a look-up table. The size of both
curve segments is fixed. Liu and Srinath [19] calculate the
curvature function by estimating the edge gradient at each
plane curve point, which is equal to the arctangent of its
Sobel difference in a 3×3 neighbourhood. Arrebola et al. [5]
define the curvature at a given point as the correlation of
the forward and backward histograms in the k-vicinity of
the point, where the resulting value is modified to include
concavity and convexity information.

Due to the characteristic noise associated with the curvature
estimation, all these algorithms implicitly or explicitly filter the
curve descriptor at a fixed cut frequency to remove noise and
provide a more robust estimation of the curvature at each plane
curve point (single scale methods). However, features appear at
different natural scales and, since most methods filter the curve
descriptor at a fixed cut frequency, only features unaffected by
such a filtering process may be detected. Thus, in the case of
angle-based curvature estimators, algorithms described above
basically consist of comparing segments of k-points at both
sides of a given point to estimate its curvature. Therefore, the
value of k determines the cut frequency of the curve filtering.
In these methods, it is not easy to choose a correct k value:
when k is small, the obtained curvature is very noisy and, when
k is large, corners which are closer than k-points are missed.
To avoid this problem, some methods propose iterative feature
detection for different cut frequencies, but they are slow and,
in any case, they must choose the cut frequencies for each
iteration [7]. Another solution is to adapt the cut frequency of
the filter at each curve point as a function of the local properties
of the shape around it [26].

Both approaches have been used to calculate the curvature
function associated with a laser scan: the iterative curvature
scale space (CSS) was used by Madhavan and Durrant-
Whyte [20] to extract stable corners. This algorithm convolves
the curve descriptor with a Gaussian kernel and imparts
smoothing at different levels of scale (the scale being
proportional to the width of the kernel). From the resulting
curve descriptor, features associated with the original shape can
be identified [21]. On the other hand, the adaptive curvature
function was employed by Núñez et al. [24] to extract corners,
line and curve segments from the laser scan data. This curvature
function is based on a modified version of the angle-based
curvature estimator proposed in [26].

In this work, we use the adaptive curvature function to
estimate the curvature at each range reading. Then, this
information is employed to segment the laser scan into
clusters of homogeneous curvature. The process to achieve this
segmentation task [24] is briefly described in this paper, and
consists of the following steps:

(1) Calculation of the maximum length of laser scan presenting
no discontinuities on the right and left sides of the working
range reading i : K f [i] and Kb[i], respectively. K f [i] is
calculated by comparing the Euclidean distance from range
reading i to its K f [i]th neighbour (d(i, i + K f [i])) to
the length of the laser scan between both range readings
(l(i, i + K f [i])) which is defined as

l(i, i + K f [i]) =

K f [i]−1∑
j=i

d( j, j + 1). (4)

Both distances tend to be equal in absence the of corners,
even if laser scans are noisy. Otherwise, the Euclidean
distance is quite shorter than the scan length. Thus, K f [i]
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Fig. 4. Calculation of the maximum length of laser scan presenting no discontinuities on the right side of range reading i (K f [i]): (a) Euclidean distance from range
reading i to range reading i + K f [i] (d E) and length of the laser scan between both range readings (l =

∑
l j ); and (b) K f [i] selection as the largest value that

satisfies
∑

l j − d E < Uk (in this case, K f [i] = 4).
is the largest value that satisfies

l(i, i + K f [i]) − d(i, i + K f [i]) < Uk (5)

Uk being a constant value that depends on the noise level
tolerated by the detector. Fig. 4 shows the process to extract
one K f [i] value. Kb[i] is also set according to Eq. (5), but
using i − Kb[i] instead of i + K f [i]. The correct selection
of the Uk value is very important. Thus, if the value of
Uk is large, K f [i] and Kb[i] tend to be large and some
corners may be missed and, if it is small, K f [i] and Kb[i]
are always very small and the resulting function is noisy.
Section 5.2 shows the process employed to fix a suitable Uk .

Fig. 5(c) presents an example of the K f [i] and Kb[i]
values associated with the range readings in Fig. 5(a). It
can be noted that the K f [i] and Kb[i] values associated
with range readings i located near to a corner are reduced in
order to accommodate them to the laser scan contour. In this
example, values for K f [i] and Kb[i] have been confined to
the interval [3. . . 7].

(2) Calculation of the local vectors Efi and Ebi associated with
each range reading i . These vectors present the variation
in the x- and y-axis between range readings i and i +

K f [i], and between i and i − Kb[i]. If (xi , yi ) are the
Cartesian coordinates of the range reading i , the local
vectors associated with i are defined as

Efi = (xi+K f [i] − xi , yi+K f [i] − yi ) = ( fxi , fyi )

Ebi = (xi−Kb[i] − xi , yi−Kb[i] − yi ) = (bxi , byi ).
(6)

(3) Calculation of the angle associated with each range reading
of the laser scan. According to the works of [27], the angle
at range reading i can be estimated by using the equation:

κi = arccos

(
Efi · Ebi

| Efi | · | Ebi |

)
. (7)

(4) Detection of line segments over κi . Line segments result
from the scan of planar surfaces. Therefore, they are
those set of consecutive range readings which are under a
minimum angle (κmin).
(5) Detection of curve segments over κi . Curve segments result
from the scan of curve surfaces. Contrary to the curvature
values associated with a line segment, it can be appreciated
that the curvature function associated with a curve segment
presents consecutive local peaks whose absolute height
can be greater than κmin. Some of them could be wrongly
considered as corners. To avoid this error, Núñez et al. [24]
associate a cornerity index to each set of consecutive range
readings whose κi values are over κmin or under −κmin.
Thus, curve segments are those sets of consecutive range
readings which do not define a line segment and have a
cornerity index greater than a given threshold Uc [24].

Fig. 6 shows the final segmentation of a laser scan between
two consecutive breakpoints. It can be noted that the curvature
function around corners is not well defined. In this case, three
regions have been detected (two line segments and one curve
segment). It can also be appreciated that usually a real curve
segment will be represented in the curvature function as a set of
consecutive local peaks of similar curvature. These consecutive
curve segments are grouped if they present similar curvature
values. Line and curve segments are the input of the Landmark
Extraction and Characterisation stage, which is described in the
next chapter.

4. Natural landmark extraction and characterisation

As can be appreciated from Fig. 6, the adaptive curvature
function can directly provide three different natural landmarks:
line segments, corners and curve segments [24]. However, in
order to include these items as landmarks in an EKF-based
SLAM algorithm [33], it is necessary to characterise them by
a set of invariant parameters and moreover, to estimate their
uncertainties. This is typically achieved by fitting parametric
curves to measurement data associated with each line or curve
segment and evaluating the uncertainty associated with the
measured data. Thus, line and curve segments can be used as
stable landmarks. In this work, this is achieved using models
that minimize the orthogonal distance from coordinate data
to the line or curve segment. It is assumed that each range
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Fig. 5. (a) Segment of a laser scan; (b) curvature function associated with (a); (c) K f and Kb values associated with the range readings of the laser scan in (a).

Fig. 6. (a) Segment of a laser scan; and (b) curvature function associated with (a). The figure shows the ib and ie values that bound the set of curvature values
associated with each local peak.
reading is independently affected by Gaussian noise in both
coordinates, range rl and bearing φl . Finally, other types of
landmarks are extracted and characterised as corners or edges.
In this section, the process to describe each type of landmark is
presented.

4.1. Line segments

In order to provide precise feature estimation it is essential
to represent uncertainties and to propagate them from single
range reading measurements to all stages involved in the feature
estimation process. To achieve this, feature extraction with a
Kalman filter has become a widely used approach [6,36]. In this
approach, a measurement prediction based on a feature model is
matched with its corresponding observation in order to compute
the best estimate of the model parameters. However, the main
drawback of this approach is the initialization of the filter when
starting a new feature. It requires a first estimate of the feature
position which has to be found without the Kalman filter. This
regression problem becomes nonlinear in the parameters when
geometrical meaningful errors have to be minimized [3].

There are several approaches for line fitting. Thus, the
parameters of a straight-line in slope-intercept form can be
determined using the equations for linear regression [35].
Then, the resulting line can be converted into the normal form
representation

x cos θ + y sin θ = d (8)

θ being the angle between the x-axis and the normal of the line
and d the perpendicular distance of the line to the origin. Under
the assumption of error free laser bearings, the covariance of the
angle and distance estimate of the line can be derived. However,
the problem of fitting a set of n points in Cartesian coordinates
to a straight-line model using linear regression is based on the
assumption that the uncertainty σi associated with each yi is
known and xi values are known exactly. In our case, the points
being processed in Cartesian coordinates are the result of a
nonlinear transformation of points from polar coordinates:

xi = ri cos φi yi = ri sin φi . (9)

This makes errors in both Cartesian coordinates correlated [13].
Effectively, if the errors in range and bearing are assumed to be
independent with zero mean and standard deviations σr and σφ ,
respectively, then the covariance matrix associated with a range
reading i in Cartesian coordinates can be approximated with a
first-order Taylor expansion as

Cxyi = Jr

[
σ 2

φ 0
0 σ 2

r

]
J T

r

=

[
σ 2

r s2
+ r2

i σ 2
φc2 σ 2

r sc − r2
i σ 2

φcs
σ 2

r sc − r2
i σ 2

φcs σ 2
r c2

+ r2
i σ 2

φ s2

]
(10)

where Jr is the Jacobian of polar to Cartesian coordinates
transformation, and c and s are cos φi and sin φi , respectively.
It is shown the existence of non-zero terms associated with σ 2

xi ,
σ 2

yi and σxyi .
Therefore, a better approach for line fitting is to minimize

the sum of square perpendicular distances of range readings
to lines. This yields a nonlinear regression problem which can
be solved for polar coordinates [3]. The line in the laser range
finder’s polar coordinate system is represented as

r =
d

cos(θ − φ)
(11)

where θ and d are the line parameters (Eq. (8)). Then, the
orthogonal distance di of a range reading, (r, φ)i , to this line
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is

di = ri cos(θ − φi ) − d. (12)

This distance di represents the error associated with the line
at this point. Then, the sum of squared errors can be defined
as

Sl(b) =

n∑
i=1

d2
i =

n∑
i=1

(ri cos(θ − φi ) − d)2 (13)

n being the number of range readings that belong to the line
segment and b = (θd)T the parameter vector. Arras and
Siegwart [3] propose to weight each single point by a different
value wi that depends on the variance modelling the uncertainty
in radial and angular direction. This produces a weighted sum
of squared errors. In our case, uncertainties in range and bearing
are the same for every range reading, so the weights for each
point in polar coordinates are also equal. Therefore, we have
not employed these weights.

The model parameters of the line (θ , d) can be obtained by
solving the nonlinear equation system to minimize (13)

∂Sl(b)

∂θ
= 0

∂Sl(b)

∂d
= 0 (14)

whose solution is [3]

θ =
1
2

arctan


∑
i

r2
i sin 2φi −

2
n

∑
i

∑
j

rir j cos φi sin φ j∑
i

r2
i cos 2φi −

1
n

∑
i

∑
j

rir j cos(φi + φ j )



d =

∑
i

ri cos(φi − θ)

n
.

(15)

For computation reasons, in [3] the Cartesian form of (15) is
suggested which presents a lower computational complexity

θ =
1
2

arctan

 −2
∑
i

(ȳ − yi )(x̄ − xi )∑
i

[(ȳ − yi )2 − (x̄ − xi )2]

 =
1
2

arctan
N

D

d = x̄ cos θ + ȳ sin θ

(16)

where x̄ =
∑

ri cos φi/n and ȳ =
∑

ri sin φi/n.

Finally, assuming that the individual measurements are
independent, the covariance matrix of the estimated line
parameters (θ , d) can be calculated as [13]

Cθ,d =

n∑
i

Ji Cxyi J T
i

=

n∑
i

[
∂θ/∂xi ∂θ/∂yi
∂d/∂xi ∂d/∂yi

]
Cxyi

[
∂θ/∂xi ∂d/∂xi
∂θ/∂yi ∂d/∂yi

]
(17)
where the terms ∂θ/∂xi , ∂θ/∂yi , ∂d/∂xi and ∂d/∂yi are
obtained as follows

∂θ

∂xi
=

(ȳ − yi )D + (x̄ − xi )N

N 2 + D2

∂θ

∂yi
=

(x̄ − xi )D + (ȳ − yi )N

N 2 + D2

∂d

∂xi
=

1
n

cos θ

+ (ȳ cos θ − x̄ sin θ)
(ȳ − yi )D + (x̄ − xi )N

N 2 + D2

∂d

∂yi
=

1
n

sin θ + (ȳ cos θ − x̄ sin θ)
(x̄ − xi )D + (ȳ − yi )N

N 2 + D2

(18)

N and D being the numerator and denominator of the
expression of θ (16).

Fig. 7 presents three different laser scans and the detected
landmarks. Figs. 7(d)–(f) show the line segments extracted
using the described approach and corresponding to laser scans
in Figs. 7(a)–(c), respectively. The end-points of each line
segment are determined by the intersection between this line
and the two lines which are perpendiculars to it and pass
through the first and last range readings (see Appendix A).
Fig. 8 shows the calculation of one of the end-points of the line
(θ1, d1).

4.2. Curve segments

A curve segment of constant curvature can be considered
as an arc of a circle which is basically described by its center
of curvature (xc, yc) and its radius ρ. Circle fitting problem
estimates these parameters finding the vector b = (xc, yc, ρ)

that minimizes

Sc(b) =

n∑
i=1

[(xi − xc)
2
+ (yi − yc)

2
− ρ2

]
2 (19)

where {(x, y)}i=1...n is the set of range readings that defines
the curve segment in Cartesian coordinates. However, the
covariance matrix associated with each range reading in
Cartesian coordinates is different (see Eq. (10)) and then, each
term in Eq. (19) must be weighted by a value which will take
into account the measurement uncertainty. In our particular
case, this can be avoided if we work in polar coordinates,
because in this coordinate system, the covariance matrix is the
same for each reading (Section 4.1). Therefore, our aim is to
find the circle (xi −xc)

2
+(yi −yc)

2
−ρ2

= 0 where x = r cos φ,
y = r sin φ, xc = rc cos φc and yc = rc sin φc, yielding

r2
+ r2

c − 2rrc cos(φ − φc) − ρ2
= 0. (20)

To minimize Sc(b) = Sc(rc, φc, ρ), finding the parameter
vector b, we use the Levenberg–Marquardt algorithm [22]. This
algorithm approximates Sc as a linear function of b, Ŝc:

Sc(b) ≈ ˆSc(b) =

∑
(di (bk) + ∇di (bk) · b)2 (21)

where di (b) = r2
i + r2

c − 2rirc cos(φi − φc) − ρ2 and ∇di (b)

is the gradient of di (b). This estimation is valid within a
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Fig. 7. (a)–(c) Three laser scans; and (d)–(f) segmentation and landmark detection associated with (a)–(c) (�—line segments end-points, o—real corners,
4—virtual corners, →—corner orientations). Circles are also represented in the figure (center and circumference).
certain trust region radius. The algorithm begins using an initial
parameter vector bcur. Then, the derivation considers how to
minimize Ŝc(p). A search direction is obtained based on the
linear function of b, and a search is made in that direction
within the limits of the trust region radius for a bnew such that
Sc(bnew) < Sc(bcur). When this bnew is found, it becomes the
new bcur for another iteration of the above process. At each
iteration, the solution can be expressed as

∇b = bnew − bcur = −(J T
cur Jcur + λDT D)−1 J T

curd(bcur) (22)

Jcur being the Jacobian matrix of the algorithm having
∇di (bcur) as its i th row, D is a weighting matrix, d(bcur)

is the vector of residuals di (bcur) and λ is a non-negative
variable which can be considered the Lagrange multiplier for
the constraint that each search is limited to the trust region
radius.

The Levenberg–Marquardt algorithm consists of the
following steps [29]:

• Set λ = 1; k1 = 0
• Repeat

· Set k2 = 0; k1 = k1 + 1
· λ = 0.04 · λ

· bcur =
bcur
|bcur|

· Set U = J T
cur Jcur, v = J T

curd(bcur); Sc(bcur) =∑
(di (bcur))

2

· Repeat
k2 = k2 + 1
λ = 10 · λ



P. Núñez et al. / Robotics and Autonomous Systems 56 (2008) 247–264 255
Fig. 8. End-points of line segment are calculated as the intersection between
two perpendicular lines.

Set H = U + λ(I + diag(u11, u22 . . . unn))

Solve the system H x = −v

Set bnew = bcur + x ; Jnew =
∑

(di (bnew))2

If converged, set bcur =
bnew
|bnew|

; return bcur
· Until Sc(bnew) < Sc(bcur) or k2 > NMAXITER
· If Sc(bnew) < Sc(bcur) then bcur = bnew

• Until k1 > NMAXITER

This algorithm uses a weighting matrix defined so that DT D
is the identity matrix plus the diagonal of J T

cur Jcur [22]. The
system H x = −v can be reliably solved using the Cholesky
decomposition [29].

As it was pointed out above, a starting guess for parameters
is required. To obtain this parameter vector b0, we use
the equation of a circle passing through three given points,
(x1, y1), (x2, y2) and (x3, y3), (Appendix B). These three
points correspond respectively to three different range readings
belonging to the previously extracted curve segment. Finally,
an estimation of the curve segment uncertainty, represented
as C(rc,φc,ρ), can be derived from this same expressions (see
Appendix C).

Figs. 7(a)–(c) present different real laser scans containing
columns and tree-like elements that are extracted and
represented (center and circumference) in Figs. 7(d)–(f).
Uncertainties associated with the center of the circles are also
shown.

4.3. Real corners

Corners are due to the change of surface being scanned or
due to the change in the orientation of the scanned surface.
Thus, they are not associated with laser scan discontinuities.
In order to extract stable corners, the iterative curvature scale
space (CSS) [20] or the adaptive curvature function [24] has
been used. Both approaches locate the corner as one of the
range readings of the laser scan and characterises it by its
position in the Cartesian coordinate system. However, as it is
illustrated in Fig. 9, the corner is not always located in one of
the scan range readings. Failing to identify the correct corner
point in the data can lead to large errors especially when corner
the is distant from the robot.

Other option is to extract the corner taking into account the
two lines associated with it. Thus, corner can be detected as the
Fig. 9. A real corner is not usually located at one of the laser range readings
(they are marked as black dots over the detected line segments).

furthest point from a line defined by the two non-touching end-
points of the lines or by finding that point in the neighbourhood
of the initial corner point, which gives the minimum sum of
error variances of both lines [13]. In our case, the existence of
a corner can be determined from the curvature function but its
characterisation (estimation of the mean pose and uncertainty
measurement) is conducted using the two lines which generate
the corner. Therefore a corner will be always defined as the
intersection of two lines, i.e. corners defined as the intersection
of a curve and a line or of two curves will be not taken into
account.

Although the corner value is a single curvature point, it is
not defined in the curvature function as a Dirac delta function.
Thus, the corner is always defined by a value associated with a
local peak of the curvature function, and a region bounded by
two range readings, ib and ie. Therefore, it can be characterised
by the cornerity index ci [24]. Taken this into account, corners
are those range readings which do not belong to any line or
curve segments and satisfy the following conditions: (i) they
are local peaks of the curvature function, i.e. their |κi | values
are over the minimum angle required to be considered a corner
instead of a spurious peak due to remaining noise (κmin);
(ii) they are located between two segments which have been
marked as line segments (these two segments determine the
region of the corner, (ib, ie)); and (iii) their cornerity indexes
are less than Uc. These constraints can be quickly applied if the
curvature function has been previously obtained.

Once a corner is detected, its position (xc, yc) is estimated
as the intersection of the two lines which generate it (see
Appendix A). The corner orientation αc can be also calculated
as the bisector of the angle defined by these two lines [32].
Finally, the covariance of the estimated corner parameters
Cxc,yc,αc can be computed depending on the noise in the line
parameters (see Appendix D). Fig. 7 illustrates the corner
detection results. Poses and uncertainties, associated with the
three laser scans in Figs. 7(a)–(c) are shown in Figs. 7(d)–(f).
Real corners are marked as ‘o’ over the laser scans.

4.4. Virtual corners

As it has been pointed out by Madhavan and Durrant-
Whyte [20], one of the main problems of a localization
algorithm which is only based on corner detection is that
the set of detected natural landmarks at each time step can
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Fig. 10. Overlaid laser scans for one experiment: (a) Black dots show the real corner that were extracted using the proposed approach; and (b) black dots show the
real and virtual corners that were extracted using the proposed approach. In both cases, the solid line represents the ground truth and the direction of travel is from
top to bottom.
be very reduced, specially when it works on semi-structured
environments. This generates a small observation vector that
does not provide enough information to estimate the robot pose.
To attenuate this problem, we propose in this paper to include
a new natural landmark which can be used in the same way as
real corners: the virtual corner. Virtual corners are defined as the
intersection of extended line segments which are not previously
defined as real corners. Fig. 10 shows a set of overlaid laser
scans. In Fig. 10(a), dots show the real corners that were
extracted using the proposed approach, whereas Fig. 10(b)
represent real and virtual corners. The number of landmarks in
this experiment has been increased from 30 to 81.

The virtual corner proposed in this paper is related to the
virtual edge anchor [34]. However, in our case, the virtual
corner is related to the line segments previously extracted
from the curvature function. The virtual edge anchor is
found without explicit line extraction. Instead, “geometrical
statistics is used to determine the large objects positions and
orientations” [34]. Although the authors do not specify the
used approach, they justify it because it offers higher robustness
against partial occlusion and noise effects. In our approach,
the robust detection of lines is directly related to the adaptive
curvature estimation algorithm and the process used for line
characterisation.

Finally, virtual corners can be characterised using the same
process described for a real corner in Section 4.3. Figs. 7(d)–(f)
show virtual corners (poses and uncertainties) associated with
laser scans in Figs. 7(a)–(c). The error propagation due to the
distances from the lines to the virtual corners can be appreciated
in their uncertainty ellipses. Figs. 7(d)–(f) also present that
virtual corners significantly increases the size of the extracted
observation vector.

4.5. Edges

The adaptive breakpoint detector searches for large
discontinuity values in the laser scan data. Range readings
that define this discontinuity are marked as breakpoints. Edges
are defined as breakpoints associated with end-points of plane
surfaces [36]. To satisfy this condition, the portion of the
Fig. 11. An edge is defined as a breakpoint associated with the end-point of a
plane surface which is not occluded by any other obstacle.

environment where the breakpoint is located must be a line
segment and it must not be occluded by any other obstacle. This
last condition is true if the breakpoint is nearer to the robot than
the other breakpoint defined by the same large discontinuity
(see Fig. 11). It must be also noted that, when the laser range
finder does not work with a scanning angle of 360◦, the first
and last breakpoints will not be considered as edges, because it
is not possible to know if they define the end-point of a surface.

Edges are characterised by the Cartesian position (x , y)
of the breakpoint and by the orientation of the plane surface
described by the line segment, α. Therefore, the covariance of
the estimated edge parameters (xe, ye, αe) can be approximated
as

Cxe yeαe =

σ 2
x σxy 0

σxy σ 2
y 0

0 0 σ 2
α

 (23)

where σ 2
α is the orientation variance associated with the line

segment.

5. Experimental results

5.1. Landmark detection results

As we commented above, the laser sensor used in the
following experiments is a SICK LMS200 mounted on a
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Fig. 12. (a) REX: a Pioneer 2AT robot from ActivMedia equipped with GPS and laser; (b) the first test area, Campus of Teatinos at Málaga University. Courtesy of
Google Earth (http://earth.google.com); and (c) the second test area, an office-like environment sited at the Andalucı́a Technology Park (Málaga).
Pioneer 2AT robot from ActivMedia. The field of view is 180◦

in front of the robot and up to 8 m distance. The range samples
are spaced every half a degree, all within the same plane.
Fig. 12(a) shows the robot used in the experiments.

Fig. 12(b) shows the first test area within the campus
of Teatinos at University of Málaga. This outdoor test area
provides a semi-structured environment for the evaluation of
the algorithm. Cars and people were present in this area while
the experiment was carried out. Fig. 12(c) shows the second
test area. In this case, the test area is an office-like environment
which presents a higher density of detected landmarks. It must
be noted that the set of threshold values used by the algorithm
are the same for both scenarios.

Fig. 13 presents the results obtained from one experiment
in the first test area, marked in Fig. 12(b). Fig. 13(b) presents
the real data from one scan of the environment. It can
be appreciated that in this type of environment the scan
range readings are not equally distributed and moreover it is
possible that some data segments were not able to be scanned.
Fig. 13(c) shows that two columns, two cars and the building
walls have been correctly observed. The line segments, center
and circumference of curve segments and corners have been
marked. Fig. 14 shows the landmark extraction results at two
different robot poses marked in Fig. 12(c). They also present
the effects of adaptive smoothing provided by the curvature
estimation algorithm. Figs. 14(c) and 14(d) present two scan
data collected in these poses. The laser scan range readings has
been marked as dots over the real layout. The squares represent
the start and end-points of each line segment. Detected corners
and circles have been marked. Moreover uncertainty of corners
and center of circles is presented as ellipses. Figs. 14(e) and
14(f) show the curvature functions associated with the laser
scans in Figs. 14(c) and 14(d), respectively. The different
segmented portions of the curvature functions are bounded
by breakpoints or rupture points. All landmarks have been
correctly detected.
Finally, Fig. 15 shows the analysis of several laser scans
acquired by the robot of the same place from different points of
view. It can be noted that all landmarks are correctly detected.
In the figure, landmarks have been manually labelled according
to the feature in the real scene they are related to. This figure
shows the ability of the proposed approach to be included in a
SLAM algorithm.

5.2. Estimation of parameters

One of the main drawbacks of the proposed method is the
existence of a set of parameters to adjust. These parameters are:

• The systematic error εs(rm) of the SICK LMS200 laser
sensor.

• The parameters σr and λ used by the breakpoints detector.
• The threshold value which determines the noise level

tolerated by the adaptive curvature detector, Uk .
• The minimum angle of a curvature value to be considered as

a local peak of the curvature function, κmin.
• The minimum value of the cornerity index associated with a

curve segment, Uc.

The process to approximate the systematic error of the SICK
laser sensor by a polynomial has been briefly described and it
is based on the previous work of Borges and Aldon [9]. Also
based on this work, the σr and λ values have been fixed to 0.005
m and 10◦, respectively.

The threshold values Uk and κmin are used to eliminate
spurious noise of the laser scan. In order to set them correctly,
a set of real plane surfaces have been scanned at different
distances from the robot. In these surfaces, the values must be
fixed to not detect any local peak. This simple experiment has
provided us an Uk value equal to 1.0 and a κmin of 0.2 rad. These
values have been used in all experiments described in this paper.

Finally, the threshold value Uc differentiates between
corners and curve segments. In order to choose a correct Uc
value, several cylindrical objects with different radius were

http://www.earth.google.com
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Fig. 13. (a) Real scene of the first test area; (b) Laser scan including cars, columns and buildings; and (c) Landmark detection (�—line segments end-points,
4—virtual corners, →—corner orientations). Circles are also represented in the figure.
tested. In the segments of the curvature function associated with
these objects, the proposed system should not detect any corner.
From these experiments, a threshold value equal to 0.5 was
selected.

6. A comparative study

In order to compare the proposed method to other
approaches, we have implemented several segmentation
algorithms which are commonly used for feature extraction in
mobile robotics. Although these algorithms can also provide
lines or corners, its use has been restricted to perform the
segmentation task. In this way, they can be integrated as
individual modules in our system and their results can be
used for the same Landmark Extraction and Characterisation
routines. This permits us to evaluate the speed, correctness
and precision of these algorithms when they run into the same
framework.

Particularly, we chose for comparison purposes methods
described by Nguyen et al. [23], Zhang [35], Borges and
Aldon [9], Madhavan and Durrant-Whyte [20] and Bandera
et al. [8]. The first method is the split-and-merge (SM)
algorithm. In a previous comparison of line extraction
algorithms using 2D laser range finders, Nguyen et al. [23]
conclude that this algorithm and the incremental one “are
preferred by their superior speed and correctness” (see [23]
for details). We have implemented the SM schema proposed
in [23]. This method is a well-known algorithm for polygonal
approximation in computer vision applications, which have
problems in dealing with curve segments. In our case, every set
of short line segments has been evaluated as a possible curve
segment. In this way, circles can be detected and characterised.
The SM algorithm will be applied to the laser scan segments
obtained from the adaptive breakpoint detector [9]. Similar to
the SM algorithm, the iterative-end-point-fit (IEPF) method
provides a polygonal approximation to the laser scan. In
this case, the version proposed by Zhang [35] have been
implemented. The split-and-merge fuzzy (SMF) proposed by
Borges and Aldon [9] uses fuzzy clustering in a split-and-merge
framework without the need to guess the number of clusters. It
has been also implemented. On the other hand, the approach
proposed by Madhavan and Durrant-Whyte [20] uses point of
maximum curvature, extracted from laser scan data, as point
landmarks in an extended Kalman filter (EKF). A curvature
scale space (CSS) algorithm is used to locate these points of
maximum curvature. This method convolves the laser scan data
with a Gaussian kernel and imparts smoothing at different levels
of scale. In order to achieve a robust determination of dominant
points, the algorithm detects them at the coarsest scale σmax
but it localizes the dominant point position at the finest scale
σmin. In our case, the detected dominant points will be used to
segment the laser scan between breakpoints, which are obtained
using the adaptive breakpoint detector [9]. Experimental results
will show the superior ability of this method to deal with
curve segment with respect to the polygonal approximation
approaches. Finally, the approach proposed by Bandera et al.
[8] is a Hough-based method for extracting line segments from
edge images that has been modified to deal with laser scans.
Basically, this method uses a random window randomized
Hough transform-(RWRHT) based approach to update an
accurate Hough parameter space and a variable bandwidth
mean shift algorithm to unsupervisedly cluster the items of
this parameter space in a set of classes. Although the Hough
transform can be also extended for fitting a circle, it has
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Fig. 14. (a), (b) Real scenes of the second test area, (c), (d) Landmark detection (�—line segments end-points, o—real corners, 4—virtual corners). Circles are
also represented in the figure; and (e), (f) curvature function associated with (a) and (b) respectively.
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Fig. 15. (a), (f) Landmarks detected by the proposed approach. Laser scans have been acquired by the robot from different poses (see text).
not been implemented because a parameter space of three
dimensions makes the problem more complex. Therefore,
the Hough-based method will be only used to provide a
segmentation of the laser scan.

To test the performance of the different approaches, a set of
artificial maps have been created using the Mapper3 software
from Activmedia Robotics. Laser scans have been obtained
from these maps using MobileSim, a software for simulating
mobile robots and their environments, for debugging and
experimentation with ARIA-based control programs and other
software. The aim of using these artificial maps is to test each
algorithm in a controlled and supervised environment, where
the number and shape of segments are known (ground truth).
Simulated laser sensor exhibits statistical errors of σr = 5 mm
and σφ = 0.1◦. Each test scan consists of 360 range readings
and it represents several line and curve segments. Thus, a total
of 100 scans were generated for testing.
Algorithms have been programmed in C, and the
benchmarks have been performed on a PC with a Pentium II
450 MHz. The minimum number of points per line or curve
segment have been fixed to 10 and the minimum physical
length of a segment have been fixed to 50 cm. Both parameters
have been chosen according to the simulated scans. Other
parameters are algorithm-specific ones. Each approach have
been tested several times for the set of scans in order to
obtain the best parameters. Segment pairs are initially matched
using a χ2-test with a matching valid gate value of 2.77.
Then, extracted segments are matched to true segments using
a nearest-neighbour algorithm. Experimental results are shown
in Table 1. The correctness measures have been obtained as [23]

TruePos =
NumberMatches
NumberTrueSeg

FalsePos =
NumberSegExAlg − NumberMatches

NumberSegExAlg

(24)
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Table 1
Experimental results of the algorithms

Algorithm SM SMF IEPF CSS HT Proposed

Execution time (ms) 6.7 14.2 3.8 37.7 31.2 9.4
TruePos 0.76 0.79 0.77 0.92 0.71 0.91
FalsePos 0.19 0.19 0.21 0.02 0.23 0.02
σ1d (mm) 14.5 11.7 15.1 10.5 10.3 10.6
σ1θ (◦) 0.61 0.57 0.62 0.53 0.53 0.54
σ1xc (mm) 13.2 12.0 12.9 10.0 12.1 10.2
σ1yc (mm) 11.7 11.2 12.3 9.6 11.7 9.8
σ1ρ (mm) 7.8 7.9 8.7 7.3 8.3 7.5

where NumberSegExAlg is the number of segments extracted
by an algorithm, NumberMatches is the number of matches
to true segments and NumberTrueSeg is the number of true
segments. To determine the precision, only line and circle
landmarks are taken into account. The following two sets of
errors on line parameters are defined:

1d : 1di = |di − dT
i |, i = 1 . . . n

1θ : 1θi = |θi − θT
i |, i = 1 . . . n

(25)

where n is the number of matched pairs, dT
i and θT

i are line
parameters of a true line, and di and θi are line parameters
of the corresponding matched line. It is assumed that error
distributions are Gaussians. Similar sets of errors on circle
parameters are defined.

As shown in the row 2 of the Table 1, the IEPF and SM
algorithms are the fastest. The proposed method is significantly
faster than the CSS and the HT ones, because its computational
complexity is proportional to the laser scan length. In terms of
correctness, the CSS and the proposed algorithms do not divide
curve segments into short straight-line segments. Therefore,
they have a high number of true positives and a few false
positives. The rest of the methods usually associate one or
two line segments to most of the curve segments present in
the laser scans. This increases the number of false positives.
To reduce these results, the minimum number of points per
line segment can be increased. However, this leaves out short
line segments, reducing the number of true positives. Finally,
all algorithms have demonstrated its ability to provide precise
lines. In this case, our results are very similar to the ones
provided by Nguyen et al. [23] and Borges and Aldon [9]. With
respect to circles, it can be noted that the CSS and the proposed
method produce the best results. This is due to its ability to
correctly detect curve segments.

7. Conclusions and future work

This paper presents an adaptive curvature estimation
algorithm for segmenting range images obtained from a
scanning laser rangefinder. With respect to other methods,
which mainly try to split the laser scan into line segments,
the main advantage of using curvature information is that
the algorithm can provide line segments and curve segments.
Besides, the main advantages of using an adaptive noise
removal to estimate curvature are: (i) segmentation is
performed at a wide range of scales for a constant set of
parameters; and (ii) estimated curvature is better defined.
Finally, the accuracy and robustness of the proposed method
was demonstrated in several experiments while meeting real
time requirements. Laser scan segments are used to obtain
several types of landmarks. Line and curve segments permit
to extract straight-line segments and circles. The curvature
function also permits to detect the existence of real corners.
However, these items will be characterised from the lines that
define them. Finally, edges and virtual corners are also extracted
from line segments. Covariance matrices associated with all
landmarks are also provided.

Future work includes the development of an algorithm for
robot localization based on the extracted features and to test it
in dynamic environments. This algorithm must be capable to
differentiate static and dynamic parts of the environment and
therefore, to represent only these static parts on a map. The
union of the static map and the moving objects could provide a
complete description of the environment.

Appendix A. Finding the corner location as the intersection
of two lines

Consider the two lines characterised by (ρ1, d1) and (ρ2, d2).
The corner point (xc, yc) will be the intersection of these lines,
so

xc cos θ1 + yc sin θ1 − d1 = 0

xc cos θ2 + yc sin θ2 − d2 = 0.
(A.1)

The first equation of (A.1) gives us an expression for xc

xc =
d1 − yc sin θ1

cos θ1
. (A.2)

If we substitute this expression in the second equation of (A.1),
we get

d1 − yc sin θ1

cos θ1
cos θ2 + yc sin θ2 − d2 = 0 (A.3)

d1 cos θ2 − yc sin θ1 cos θ2 + yc cos θ1 sin θ2 − d2 cos θ1 = 0

(A.4)

yc[cos θ1 sin θ2 − sin θ1 cos θ2] = d2 cos θ1 − d1 cos θ2 (A.5)

yc =
d2 cos θ1 − d1 cos θ2

cos θ1 sin θ2 − sin θ1 cos θ2
(A.6)

which can be simplified to

yc =
d2 cos θ1 − d1 cos θ2

sin(θ2 − θ1)
. (A.7)

Finally, we can substitute (A.7) in (A.2) to get

xc =

d1 −

(
d2 cos θ1−d1 cos θ2

sin θ2 cos θ1−sin θ1 cos θ2

)
cos θ1

(A.8)

xc =
d1(sin θ2 cos θ1−sin θ1 cos θ2)−d2 cos θ1 sin θ1+d1 cos θ2 sin θ1

cos θ1(sin θ2 cos θ1−sin θ1 cos θ2)
(A.9)

xc =
d1 sin θ2 − d2 sin θ1

sin(θ2 − θ1)
. (A.10)
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Appendix B. Finding the parameter vector of a circle
segment using three points

Consider three points (x1, y1), (x2, y2) and (x3, y3) that
belong to a circumference defined by b = (xc, yc, ρ), where
(xc, yc) is the center and ρ is the radius. In order to obtain
b, solution of the problem, we can take into account that the
distance between the three points and the circumference center
is equal to the circumference radius, then

ρ2
= (x1 − xc)

2
+ (y1 − yc)

2

ρ2
= (x2 − xc)

2
+ (y2 − yc)

2

ρ2
= (x3 − xc)

2
+ (y3 − yc)

2.

(B.1)

The solution of the system defined by (B.1) is

yc = (a · f − c · d)/(b · d − a · e)

xc = (yc · b)/a + c/a

ρ =

√
((x1 − xc)2 + (y1 − yc)2)

(B.2)

where a, b, c, d , e and f are given by

a = 2(x2 − x1)

b = 2(y2 − y1)

c = x2
1 + y2

1 − x2
2 − y2

2

d = 2(x3 − x1)

e = 2(y3 − y1)

f = x2
1 + y2

1 − x2
3 − y2

3 .

(B.3)

Appendix C. Deriving the covariance matrix associated
with a circle segment

A circle is characterised using its center and radius,
(xc, yc, ρ). In this appendix we are interested in estimating the
uncertainty associated with a circle segment. To calculate this
uncertainty, denominated Cxc,yc,ρ , we define b as [xc ycρ]

T
=

f (xc, yc, ρ). Then the first-order Taylor expansion of b
is

1b = ∇ f (x, y)1[xTyT
]
T

= J1[xTyT
]
T (C.1)

J being the Jacobian of f (x, y), whose elements are obtained
by taking into account Eqs. (B.1) and (B.2). If we would
calculate this Jacobian, we can approximate the covariance
as

C(xc,yc,ρ) = JCx1 y1x2 y2x3 y3 J T (C.2)

where Cx1 y1x2 y2x3 y3 is known and defined as the matrix

Cx1 y1x2 y2x3 y3

=



σ 2
x1

σx1 y1 0 0 0 0
σx1 y1 σ 2

y1
0 0 0 0

0 0 σ 2
x2

σx2 y2 0 0
0 0 σx2 y2 σ 2

y2
0 0

0 0 0 0 σ 2
x3

σx3 y3

0 0 0 0 σx3 y3 σ 2
y3


. (C.3)
To obtain an approximate covariance and calculate the
Jacobian, we can consider

yc =
a f − cd

bd − ae
=

N

D

R = ρ2
(C.4)

where the constants a, b, c, d, e, and f are defined in (B.3).
Then, the elements of the Jacobian can be calculated as

J1,1 =
∂xc

∂x1
=

∂yc

∂x1
·

b

a
+

2

a2 · (byc + x1a + c) (C.5)

J1,2 =
∂xc

∂y1
=

∂yc
∂y1

· b + 2(y1 − yc)

a
(C.6)

J1,3 =
∂xc

∂x2
=

∂yc

∂x2
·

b

a
−

2

a2 · (byc + x2a + c) (C.7)

J1,4 =
∂xc

∂y2
=

∂yc
∂y2

· b + 2(yc − y2)

a
(C.8)

J1,5 =
∂xc

∂x3
=

∂yc

∂x3
·

b

a
(C.9)

J1,6 =
∂xc

∂y3
=

∂yc
∂y3

· b

a
(C.10)

J2,1 =
∂yc

∂x1

=
2(x1 · (a − d) + c · f ) · D − 2(e − b) · N

D2 (C.11)

J2,2 =
∂yc

∂y1
=

2y1(a − d) · D − 2(1 − d)N

D2 (C.12)

J2,3 =
∂yc

∂x2
=

2x2 · ( f + d) · D + 2eN

D2 (C.13)

J2,4 =
∂yc

∂y2
=

2y2d D − 2d N

D2 (C.14)

J2,5 =
∂yc

∂x3
=

−2(ax2 − c) · D − 2bN

D2 (C.15)

J2,6 =
∂yc

∂y3
=

−2y3aD + 2aN

D2 (C.16)

J3,1 =
∂ρ

∂x1

= R−1/2
(
(x1 − xc)

(
1 −

∂xc

∂x1

)
− (y1 − yc)

∂yc

∂x1

)
(C.17)

J3,2 =
∂ρ

∂y1

= R−1/2
(
(y1 − yc)

(
1 −

∂yc

∂y1

)
− (x1 − xc)

∂xc

∂y1

)
(C.18)

J3,3 =
∂ρ

∂x2

= −R−1/2
(

(x1 − xc)
∂xc

∂x2
− (y1 − yc)

∂yc

∂x2

)
(C.19)
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J3,4 =
∂ρ

∂y2

= −R−1/2
(

(y1 − yc)
∂yc

∂y2
+ (x1 − xc)

∂xc

∂y2

)
(C.20)

J3,5 =
∂ρ

∂x3

= −R−1/2
(

(x1 − xc)
∂xc

∂x3
+ (y1 − yc)

∂yc

∂x3

)
(C.21)

J3,6 =
∂ρ

∂y3

= −R−1/2
(

(y1 − yc)
∂yc

∂y3
+ (x1 − xc)

∂xc

∂y3

)
. (C.22)

Appendix D. Deriving the covariance matrix associated
with a corner

To obtain an approximation of the uncertainty associated
with a corner, represented as Cxc ycαc , we will operate in
a similar way to Appendix C. In this case, we use b as
[xc ycαc]

T
= f (xc, yc, αc).

Therefore, after the first-order Taylor expansion, the
covariance can be approximated as

Cxc ycαc = JCr1α1r2α2 J T (D.1)

Cr1α1r2α2 being the covariance matrix associated with the lines
which generate the corner. Cr1α1r2α2 can be expressed as

Cr1α1r2α2 =


σ 2

r1
σr1α1 0 0

σr1α1 σ 2
α1

0 0
0 0 σ 2

r2
σr2α2

0 0 σr2α2 σ 2
α2

 . (D.2)

Taking into account that α = (α1 − α2)/2, the elements of the
Jacobian J can be calculated as follows

J1,1 =
∂xc

∂r1
=

sin α2

sin(α2 − α1)
(D.3)

J2,1 =
∂xc
∂α1

=
−r2 cos α1 sin(α2−α1)+cos(α2−α1)[r1 sin α2−r2 sin α1]

sin2(α2−α1)
(D.4)

J3,1 =
∂xc

∂r2
=

− sin α1

sin(α2 − α1)
(D.5)

J4,1 =
∂xc
∂α2

=
r1 cos α2 sin(α2−α1)−cos(α2−α1)[r1 sin α2−r2 sin α1]

sin2(α2−α1)
(D.6)

J1,2 =
∂yc

∂r1
=

− cos α2

sin(α2 − α1)
(D.7)

J2,2 =
∂yc
∂α1

=
−r2 sin α1 sin(α2−α1)+cos(α2−α1)[r2 cos α1−r1 cos α2]

sin2(α2−α1)
(D.8)

J3,2 =
∂yc

∂r2
=

cos α1

sin(α2 − α1)
(D.9)
J4,2 =
∂yc
∂α2

=
r1 sin α2 sin(α2−α1)−cos(α2−α1)[r2 cos α1−r1 cos α2]

sin2(α2−α1)
(D.10)

J1,3 =
∂αc

∂r1
= 0 (D.11)

J2,3 =
∂αc

∂α1
=

1
2

(D.12)

J3,3 =
∂αc

∂r2
= 0 (D.13)

J4,3 =
∂αc

∂α2
= −

1
2
. (D.14)
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